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Lecture 8: Robust Linear Regression

In this lecture we’ll apply the sum-of-squares paradigm to the problem of linear regression with ad-
versarial corruptions. We’ll depart slightly from previous lectures and work in a setting where the data is
not necessarily well-modeled as a linear regression, so there is no parameter that we are trying to identify.
Rather than giving an SoS proof of identifiability, we’ll show (using an SoS proof) that the if 𝐷1, 𝐷2 are
two distributions which are close in total variation distance, then the fit of a linear function for 𝐷1 can be
bounded by the fit of the linear function for 𝐷2 (so long as 𝐷1 is hypercontractive).

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Robust Linear Regression

In linear regression, we have sample access to a distribution  over pairs (𝑥, 𝑦) ∈ R𝑑 ×R, where 𝑥 are the
covariates and 𝑦 are the labels, and our goal is to find the best linear function which relates the covariates
and labels. The way we measure fit can vary, but in this lecture we’ll consider the squared loss. For a linear
function defined by 𝜃 ∈ R𝑑 , we define the squared loss error,

err(𝜃) = 𝐄
(𝑥,𝑦)∼

(⟨𝜃, 𝑥⟩ − 𝑦)
2
,

and we define the minimum error achievable on ,

err() = argmin
𝜃∈R𝑑

err(𝜃).

Here, we won’t make the assumption that the data is generated by a linear model (which is referred to as
the realizable setting). We are just looking for the best-fit linear function.

The non-robust setting. In the non-robust setting, we are given a dataset of pairs {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)} ⊂

R
𝑑 ×R sampled from . Let ̂ be the uniform distribution over these samples. There is a simple linear-

algebraic closed form for the best-fit line for this set of samples. Letting 𝑋 be the 𝑑 × 𝑛 matrix whose 𝑖th
row is given by 𝑥𝑖, and 𝑦 ∈ R𝑛 be the vector whose 𝑖th entry is 𝑦𝑖,

�̂� = argmin
𝜃∈R𝑑

𝐄
(𝑥,𝑦)∼̂

(⟨𝑥, 𝜃⟩ − 𝑦)
2
= argmin

𝜃

1

𝑛
‖𝑋𝜃 − 𝑦‖

2
= (𝑋

−1
𝑋 )𝑋

−1
𝑦.

The idea is then to ensure that we have enough samples 𝑛 so that �̂� generalizes; that is, that it achieves
an error on the “population“ data from , err(𝜃), which is not too far from the error on the sample,
err(̂) = err̂(�̂�). For the purposes of this lecture, we will completely ignore this aspect of generaliza-
tion/concentration; we’ll assume that any linear function with bounded error on ̂ has a similar bound on
the error in , and instead, we will be concerned with handling adversarial corruptions to ̂.
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The strong contaminationmodel. Here, we’ll be interested in the following setting: the points (𝑥1, 𝑦1),
… , (𝑥𝑛, 𝑦𝑛) are first sampled from . Then, an adversary makes arbitrary corruptions to an 𝜀 fraction of
points, so that we observe (𝑥′1, 𝑦

′
1),… , (𝑥′𝑛, 𝑦

′
𝑛), and our only promise is that for a subset 𝐼 ⊂ [𝑛] of size

|𝐼 | = (1− 𝜀)𝑛, each 𝑖 ∈ 𝐼 has 𝑥′𝑖 = 𝑥𝑖 and 𝑦′𝑖 = 𝑦𝑖. Our goal is, given access only to this corrupted sample set,
to find some �̂� ∈ R𝑑 which makes err

�̂�
(𝜃) as small as possible. Ideally, we would like that the fit not be too

much worse than in the uncorrupted setting, matching the uncorrupted setting closely when the fraction
of corruptions 𝜀 is small:

err
�̂�
(𝜃) ⩽ (1 + 𝑓 (𝜀))err(�̂�),

where 𝑓 ∶ R → R is such that lim𝜀→0 𝑓 (𝜀) = 0.

2 Relating error for distributions close in total variation

Here, we will show that if we have two distributions which are close in total variation distance, and if at
least one of the two distribution satisfies a hyperccontractivity condition, then any linear function achieves
similar error on both. The condition we will need is the following:

Definition 2.1. Let 𝑘 be an even integer. We say a distribution  over R𝑑 is (𝑘, 𝐶𝑘)-hypercontractive if
for all 𝑣 ∈ R𝑑 ,

𝐄
𝑋∼𝑋

[⟨𝑣, 𝑋 ⟩
𝑘
] ⩽ 𝐶

𝑘/2

𝑘
⋅ 𝐄
𝑥∼𝑋

[⟨𝑣, 𝑋 ⟩
2
]
𝑘/2

.

This is similar to the subgaussianity condition we saw in Lecture 4.

Lemma 2.2. Suppose 1,2 are distributions over R𝑑 ×R which satisfy dTV(1,2) ⩽ 𝜀, and suppose 1

is (𝑘, 𝐶𝑘)-hypercontractive for 𝑘 an even positive integer.1 Then for any 𝜃1, 𝜃2 ∈ R
𝑑 ,

err1
(𝜃2) ⩽ (1 + 𝑂(𝐶𝑘𝜀

1−2/𝑘
)) ⋅ err2

(𝜃2) + 𝑂(𝐶𝑘𝜀
1−2/𝑘

) ⋅ err1
(𝜃1).

Before we prove this lemma, a word or two about its intended use. Suppose we are in a setting where
̂ is 𝑘-hypercontractive. We have access only to the corrupted distribution ̂′, but we can try to find
a distribution 2 which minimizes err(2) subject to dTV(̂′,2) ⩽ 𝜀, which implies by the triangle
inequality dTV(̂,2) ⩽ 2𝜀. Because 2 minimizes err(2) subject to dTV(̂′,2) ⩽ 𝜀, in particular
err(2) ⩽ err(̂). We could then take 𝜃2 = argmin𝜃 err2

(𝜃), and then, choosing 𝜃1 = argmin𝜃 err̂(𝜃),
we have from Lemma 2.2 that

err̂(𝜃2) ⩽ (1 + 𝑂(𝐶𝑘𝜀
1−2/𝑘

)) ⋅ err(2) + 𝑂(𝐶𝑘𝜀
1−2/𝑘

) ⋅ err̂(𝜃1) ⩽ (1 + 𝑂(𝐶𝑘𝜀
1−2/𝑘

)) ⋅ err(̂)

so that 𝜃2 matches the optimal error within a factor of (1 + 𝑓 (𝜀)) for 𝑓 going to zero with epsilon; the
stronger the hypercontractive property of ̂, the faster 𝑓 goes to zero with epsilon, and the better our
approximation. Later, our strategy will be to prove a sum-of-squares version of this lemma and then use a
degree-𝑂(𝑘) sum-of-squares to find a pseudodistribution with the desired properties of 2.

Notice that, perhaps surprisingly, we did not require 2 to be hypercontractive.
1If we make the weaker requirement that only the marginal of1 on the covariates 𝑥 is hypercontractive, a weaker version of

this lemma, with a second error term, is true. In some contexts it is important to let themarginal on 𝑦 not satisfy hypercontractivity.
Here we’ll make this more stringent assumption for clarity of exposition; we’ll comment in the proof where it could be relaxed.
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Proof of Lemma 2.2. We’ll sample (𝑥, 𝑦) ∼ 1 and (𝑎, 𝑏) ∼ 2 according to the total variation coupling
between the distributions, so that (𝑥, 𝑦) = (𝑎, 𝑏) with probability 1 − 𝜀. Then by definition,

err1
(𝜃2) = 𝐄

(𝑥,𝑦)∼1

(⟨𝜃2, 𝑥⟩ − 𝑦)
2

= 𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)=(𝑥,𝑦)(⟨𝜃2, 𝑥⟩ − 𝑦)
2
] + 𝐄

(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)≠(𝑥,𝑦)(⟨𝜃2, 𝑥⟩ − 𝑦)
2
]

= 𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)=(𝑥,𝑦)(⟨𝜃2, 𝑎⟩ − 𝑏)
2
] + 𝐄

(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)≠(𝑥,𝑦)(⟨𝜃2, 𝑥⟩ − 𝑦)
2
]

⩽ 𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[(⟨𝜃2, 𝑎⟩ − 𝑏)
2
] + 𝐄

(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)≠(𝑥,𝑦)(⟨𝜃2, 𝑥⟩ − 𝑦)
2
]

= err2
(𝜃2) + 𝐄

(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)≠(𝑥,𝑦)(⟨𝜃2, 𝑥⟩ − 𝑦)
2
] ,

where in the first step we used that the sum of the indicators is 1, in the second step we used that (𝑎, 𝑏) =
(𝑥, 𝑦) in the first term, in the third step we were able to drop the indicator because (⟨𝜃2, 𝑎⟩− 𝑏)2 is a square,
and finally we applied the definition of the error.

Now we’ll bound this second term in which we have the (𝑎, 𝑏) ≠ (𝑥, 𝑦). We’ll use Hölder’s inequality
to separate the event over 𝑎, 𝑏 from the term involving 𝑥, 𝑦. Hölder’s inequality states that for any 𝑝, 𝑞 ⩾ 1

with 1
𝑝
+ 1

𝑞
= 1, ⟨𝑢, 𝑣⟩ ⩽ ‖𝑢‖𝑝‖𝑣‖𝑞 . We’ll apply it with 𝑝 = 𝑘

𝑘−2
and 𝑞 = 𝑘

2
.

𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)≠(𝑥,𝑦)(⟨𝜃2, 𝑥⟩ − 𝑦)
2
] ⩽

⎛
⎜
⎜
⎜
⎝

𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[
𝟏
𝑘/(𝑘−2)

(𝑎,𝑏)≠(𝑥,𝑦)]

⎞
⎟
⎟
⎟
⎠

1−2/𝑘
⎛
⎜
⎜
⎜
⎝

𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[(⟨𝜃2, 𝑥⟩ − 𝑦)
𝑘
]

⎞
⎟
⎟
⎟
⎠

2/𝑘

=

⎛
⎜
⎜
⎜
⎝

𝐄
(𝑥,𝑦)∼1

(𝑎,𝑏)∼2

[𝟏(𝑎,𝑏)≠(𝑥,𝑦)]

⎞
⎟
⎟
⎟
⎠

1−2/𝑘

(
𝐄

(𝑥,𝑦)∼1

[(⟨𝜃2, 𝑥⟩ − 𝑦)
𝑘
]
)

2/𝑘

⩽ 𝜀
1−2/𝑘

(
𝐄

(𝑥,𝑦)∼1

[(⟨𝜃2, 𝑥⟩ − 𝑦)
𝑘
]
)

2/𝑘

, (1)

where we have used that dTV(1,2) ⩽ 𝜀. We now bound this last term. We add and subtract zero to get
that

(⟨𝜃2, 𝑥⟩ − 𝑦)
𝑘
= (⟨𝜃2 − 𝜃1, 𝑥⟩ + (⟨𝜃1, 𝑥⟩ − 𝑦)

𝑘 ⩽ 2
𝑘−1

(⟨𝜃2 − 𝜃1, 𝑥⟩
𝑘
+ (⟨𝜃1, 𝑥⟩ − 𝑦)

𝑘
) ,

where we’ve used the SoS inequality (𝑎 + 𝑏)𝑘 ⩽ 2𝑘−1(𝑎𝑘 + 𝑏𝑘) from a previous lecture.
Now it is time to use the 𝑘-hypercontractivity of1. Note that the first term, ⟨𝜃2−𝜃1, 𝑥⟩

𝑘 only involves
𝑥 , while the second term involves 𝑦 too. If we only were to assume that the marginal of 1 on 𝑥 is
hypercontractive, then we could just leave this term, and get an additive error of (2𝜀)1−2/𝑘 𝐄1

[(⟨𝜃1, 𝑥⟩ −

𝑦)𝑘]2/𝑘 . In some cases, we would want to allow for only this marginal distribution to be hypercontractive.
Here, for a simpler exposition, we have assumed 1 is hypercontractive on all coordinates, so

𝐄
1

[(⟨𝜃1, 𝑥⟩ − 𝑦)
𝑘
] ⩽ 𝐶

𝑘/2

𝑘
𝐄
1

[(⟨𝜃1, 𝑥⟩ − 𝑦)
2
]
𝑘/2

= (𝐶𝑘 ⋅ err1
(𝜃1))

𝑘/2
.

Applying the 𝑘-hypercontractivity of 1 to the first term as well,

𝐄
(𝑥,𝑦)∼1

[⟨𝜃2 − 𝜃1, 𝑥⟩
𝑘
] ⩽ 𝐶

𝑘/2

𝑘
𝐄

(𝑥,𝑦)∼1

[⟨𝜃2 − 𝜃1, 𝑥⟩
2
]
𝑘/2
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and again adding and subtracting 𝑦, then applying (𝑎 + 𝑏)2 ⩽ 2𝑎2 + 2𝑏2,

= 𝐶
𝑘/2

𝑘
𝐄

(𝑥,𝑦)∼1

[((⟨𝜃2, 𝑥⟩ − 𝑦) − (⟨𝜃1, 𝑥⟩ − 𝑦))
2
]
𝑘/2

⩽ 𝐶
𝑘/2

𝑘
𝐄

(𝑥,𝑦)∼1

[2 ((⟨𝜃2, 𝑥⟩ − 𝑦)
2
+ (⟨𝜃1, 𝑥⟩ − 𝑦)

2
)]

𝑘/2

= (2𝐶𝑘 ⋅ (err1
(𝜃2) + err1

(𝜃1)))
𝑘/2

.

Plugging this back in to (1),

(1) ⩽ (2𝜀)
1−2/𝑘

((
𝐶𝑘 ⋅ err1

(𝜃1))
𝑘/2

+ (2𝐶𝑘 ⋅ err1
(𝜃1) + 2𝐶𝑘 ⋅ err1

(𝜃2))
𝑘/2

)

2/𝑘

⩽ (2𝜀)
1−2/𝑘

((
𝐶𝑘 ⋅ err1

(𝜃1))
𝑘/2

+ (2𝐶𝑘 ⋅ err1
(𝜃1) + 2𝐶𝑘 ⋅ err1

(𝜃2))
𝑘/2

)

2/𝑘

⩽ (2𝜀)
1−2/𝑘

𝐶𝑘 (3err1
(𝜃1) + 2err1

(𝜃2)) .

Putting everything together,

err1
(𝜃2) ⩽ err2

(𝜃2) + 3(2𝜀)
1−2/𝑘

𝐶𝑘err1
(𝜃1) + 2𝐶𝑘(2𝜀)

1−1/2𝑘
err1

(𝜃2)

(1 − 2𝐶𝑘(2𝜀)
1−2/𝑘

) ⋅ err1
(𝜃2) ⩽ err2

(𝜃2) + 3(2𝜀)
1−2/𝑘

𝐶𝑘err1
(𝜃1)

and dividing through by 1−2𝐶𝑘(2𝜀)
1−2/𝑘 finishes the proof, since 1/(1−𝛿) = 1+𝑂(𝛿)when 𝛿 is small.

3 Sum-of-squares algorithm for robust regression

As discussed above, if we could minimize err(2) over distributions 2 which satisfy dTV(2, ̂′) ⩽ 𝜀,
Lemma 2.2 guarantees that the minimizing 𝜃2 = argmin𝜃 err2

(𝜃) would have bounded error for ̂. We
turn to the sum-of-squares paradigm to replace this optimization over distributions to optimization over
pseudodistributions. We take the following polynomial optimization probelm over variables𝑤1,… , 𝑤𝑛 ∈ R

where 𝑤𝑖 represents the indicator that (𝑥′𝑖 , 𝑦′𝑖 ) is in the support of 2, 𝑎1,… , 𝑎𝑛 ∈ R𝑑 and 𝑏1,… , 𝑏𝑛 ∈ 𝑅

representing the points in the support of 2, and 𝜃 ∈ R𝑑 the linear regression coefficients:

min
(

1

𝑛

𝑛

∑

𝑖=1

(⟨𝑎𝑖, 𝜃⟩ − 𝑏𝑖)
2

)

𝑘/2

subject to
𝑤
2
𝑖 = 𝑤𝑖 ∀𝑖 ∈ [𝑛]

𝑤𝑖(𝑎𝑖 − 𝑥
′
𝑖 ) = 0 ∀𝑖 ∈ [𝑛]

𝑤𝑖(𝑏𝑖 − 𝑦
′
𝑖 ) = 0 ∀𝑖 ∈ [𝑛]

𝑛

∑

𝑖=1

𝑤𝑖 = (1 − 𝜀)𝑛.

We can then think of2 be the uniform distribution over the 𝑎𝑖, 𝑏𝑖. Our objective ismin err2
(𝜃)𝑘/2 rather

than min err2
(𝜃)l; this is because we will ultimately need to work with the 𝑘/2th power in our sum-of-

squares proof of Lemma 2.2.
Getting a SoS proof of Lemma 2.2 will require two ingredients: the first is an SoS version of Hölder’s

inequality. The second is an SoS version of hypercontractivity. We will say a distribution  is degree-𝑡
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SoS-certifiably (𝐶𝑘 , 𝑘)-hypercontractive if there is a degree-𝑡 proof that 𝐄𝑋∼[⟨𝑋, 𝑣⟩𝑘] ⩽ 𝐶
𝑘/2

𝑘
𝐄[⟨𝑋, 𝑣⟩2]𝑘/2.

Recall for example that  (0,1) is degree-𝑘 certifiably (𝑘, 𝑘)-hypercontractive, as is the uniform distribu-
tion over 𝑥1,… , 𝑥𝑛 ∼  (0,1) when 𝑛 = 𝑑Ω(𝑘); a more thorough account of the distributions which are
known to be certifiably hypercontractive can be found in [KS17].

Theorem 3.1. Let 𝑘 > 2 be a power of 2. If ̂ is a degree-𝑡 SoS-certifiably (𝐶𝑘 , 𝑘)-hypercontractive, then for
�̃� a degree-𝑡 pseudoexpectation optimizing the program above,

err̂(�̃�[𝜃]) ⩽ (1 + 𝑂(𝐶𝑘𝜀
1−2/𝑘

)) ⋅ err(̂).

Proof. The error achieved by �̃�[𝜃] can be bounded by

err̂(�̃�[𝜃]) =
1

𝑛

𝑛

∑

𝑖=1

(⟨�̃�[𝜃], 𝑥𝑖⟩ − 𝑦𝑖)
2
⩽ �̃�

[

1

𝑛

𝑛

∑

𝑖=1

(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)
2

]
= �̃�[err̂(𝜃)],

since �̃�[𝑓 ]2 ⩽ �̃�[𝑓 2] by Cauchy-Schwarz. Hence it is enough to give a sum-of-squares proof that err̂(𝜃)
is bounded.

We’ll prove an SoS version of Lemma 2.2. Let 𝑤′
𝑖 = 𝑤𝑖 ⋅ 𝟏[(𝑥𝑖, 𝑦𝑖) = (𝑥′𝑖 , 𝑦

′
𝑖 )], we can verify that the 𝑤′

𝑖

also satisfy the axioms 𝑤′
𝑖 = (𝑤′

𝑖 )
2. Now, we use these 𝑤′

𝑖 to simulate the “coupling” from the argument of
Lemma 2.2:

err̂(𝜃) = 𝐄
𝑖∼[𝑛]

[(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)
2
]

= 𝐄
𝑖∼[𝑛]

[𝑤
′
𝑖 (⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

2
] + 𝐄

𝑖∼[𝑛]
[(1 − 𝑤

′
𝑖 )(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

2
]

= 𝐄
𝑖∼[𝑛]

[𝑤𝑖𝟏(𝑥𝑖,𝑦𝑖)=(𝑥′𝑖 ,𝑦
′
𝑖 )
(⟨𝜃, 𝑥

′
𝑖 ⟩ − 𝑦

′
𝑖 )
2
] + 𝐄

𝑖∼[𝑛]
[(1 − 𝑤

′
𝑖 )(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

2
]

and since we have the constraint 𝑤𝑖𝑥
′
𝑖 = 𝑤𝑖𝑎𝑖 and 𝑤𝑖𝑦

′
𝑖 = 𝑤𝑖𝑦𝑖,

= 𝐄
𝑖∼[𝑛]

[𝑤
′
𝑖 (⟨𝜃, 𝑎𝑖⟩ − 𝑏𝑖)

2
] + 𝐄

𝑖∼[𝑛]
[(1 − 𝑤

′
𝑖 )(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

2
]

⩽ 𝐄
𝑖∼[𝑛]

[(⟨𝜃, 𝑎𝑖⟩ − 𝑏𝑖)
2
] + 𝐄

𝑖∼[𝑛]
[(1 − 𝑤

′
𝑖 )(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

2
],

since 𝑤′
𝑖 = (𝑤′

𝑖 )
2 and (⟨𝜃, 𝑎𝑖⟩ − 𝑏𝑖)

2 are squares.
Now, we use the following sum-of-squares version of Hölder’s inequality:

Claim 3.2. Let 𝑡 be a power of 2. Then for indeterminates 𝑢1,… , 𝑢𝑛 and 𝑓1,… , 𝑓𝑛,

{𝑢
2
𝑖 = 𝑢𝑖}𝑖∈[𝑛] ⊢𝑂(𝑡)

{

(
∑

𝑖

𝑢𝑖𝑓𝑖
)

𝑡

⩽ ∑

𝑖 (
∑

𝑖

𝑢𝑖
)

𝑡−1

(
∑

𝑖

𝑓
𝑡
𝑖
)

}

Proof. We’ll prove the stronger claim,

{𝑢
2
𝑖 = 𝑢𝑖}𝑖∈[𝑛] ⊢𝑂(𝑡)

{

(
∑

𝑖

𝑢𝑖𝑓𝑖
)

𝑡

⩽ ∑

𝑖 (
∑

𝑖

𝑢𝑖
)

𝑡−1

(
∑

𝑖

𝑢𝑖𝑓
𝑡
𝑖
)

}

,

by induction, from which the claim follows because the 𝑢𝑖 and 𝑓 𝑡
𝑖 are squares. For the base case, 𝑡 = 2, the

statement follows by Cauchy-Schwarz and from the constraints 𝑢2𝑖 = 𝑢𝑖:

(
∑

𝑖

𝑢𝑖𝑓𝑖
)

2

=
(
∑

𝑖

𝑢
2
𝑖 𝑓𝑖

)

2

⩽
(
∑

𝑖

𝑢
2
𝑖
)(

∑

𝑖

𝑢
2
𝑖 𝑓

2
𝑖
)

=
(
∑

𝑖

𝑢𝑖
)(

∑

𝑖

𝑢𝑖𝑓
2
𝑖
)
.
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Now, assume the statement holds for 𝑡, and we will prove it for 2𝑡. By the induction hypothesis, there is a
degree-𝑂(𝑡) proof that

(
∑

𝑖

𝑢𝑖𝑓𝑖
)

𝑡

⩽
(
∑

𝑖

𝑢𝑖
)

𝑡−1

(
∑

𝑖

𝑢𝑖𝑓
𝑡
𝑖
)
.

Since both sides are non-negative, the inequality holds when we square both sides (which multiplies the
degree by 2). From this we have

(
∑

𝑖

𝑢𝑖𝑓𝑖
)

2𝑡

⩽
(
∑

𝑖

𝑢𝑖
)

2𝑡−2

(
∑

𝑖

𝑢𝑖𝑓
𝑡
𝑖
)

2

=
(
∑

𝑖

𝑢𝑖
)

2𝑡−2

(
∑

𝑖

𝑢
2
𝑖 𝑓

𝑡
𝑖
)

2

⩽
(
∑

𝑖

𝑢𝑖
)

2𝑡−2

(
∑

𝑖

𝑢
2
𝑖
)(

∑

𝑖

𝑢
2
𝑖 𝑓

2𝑡
𝑖
)

=
(
∑

𝑖

𝑢𝑖
)

2𝑡−1

(
∑

𝑖

𝑢𝑖𝑓
2𝑡
𝑖
)
,

where we have used the Booleanity constraints 𝑢2𝑖 = 𝑢𝑖 and Cauchy-Scwarz, increasing the degree by 𝑂(1).
This concludes the proof.

Applying this SoS-Hölder’s inequality to our expression with 𝑢𝑖 = (1 − 𝑤′
𝑖 ),

(
𝐄

𝑖∼[𝑛]
[(1 − 𝑤

′
𝑖 )(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

2
]
)

𝑘/2

⩽
(

𝐄
𝑖∼[𝑛]

(1 − 𝑤
′
𝑖 ))

(𝑘−2)/2

(
𝐄

𝑖∼[𝑛]
(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

𝑘

)

⩽ (2𝜀)
(𝑘−2)/2

(
𝐄

𝑖∼[𝑛]
(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)

𝑘

)

since∑𝑖 1 −𝑤′
𝑖 ⩽ 2𝜀 by the fact that only 𝜀𝑛 of the 𝟏(𝑥𝑖,𝑦𝑖)≠(𝑥′𝑖 ,𝑦′𝑖 ) are nonzero, and because∑𝑖 𝑤𝑖 = (1 − 𝜀)𝑛.

Now, we can introduce the minimizer 𝜃∗ = argmin𝜃 err̂(𝜃) as in the proof of Lemma 2.2,

= (2𝜀)
(𝑘−2)/2

(
𝐄

𝑖∼[𝑛]
(⟨𝜃 − 𝜃

∗
, 𝑥𝑖⟩ + ⟨𝜃

∗
, 𝑥𝑖⟩ − 𝑦𝑖)

𝑘

)

And using the SoS inequality (𝑎 + 𝑏)𝑘 ⩽ 2𝑘−1(𝑎𝑘 + 𝑏𝑘) for 𝑘 a power of 2,

⩽ (2𝜀)
(𝑘−2)/2

2
𝑘−1

(
𝐄

𝑖∼[𝑛]
⟨𝜃 − 𝜃

∗
, 𝑥𝑖⟩

𝑘
+ (⟨𝜃

∗
, 𝑥𝑖⟩ − 𝑦𝑖)

𝑘

)
.

The quantities 𝐄⟨𝜃 − 𝜃∗, 𝑥𝑖⟩
𝑘 and 𝐄(⟨𝜃∗, 𝑥𝑖⟩ − 𝑦𝑖)

𝑘 are bounded very much as in Lemma 2.2, except that we
must appeal to the SoS-certifiable hypercontractivity. Given this, we have

⩽ (2𝜀)
(𝑘−2)/2

2
𝑘−1

𝐶
𝑘/2

𝑘
((

𝐄
𝑖∼[𝑛]

⟨𝜃 − 𝜃
∗
, 𝑥𝑖⟩

2

)

𝑘/2

+
(

𝐄
𝑖∼[𝑛]

(⟨𝜃
∗
, 𝑥𝑖⟩ − 𝑦𝑖)

2

)

𝑘/2

)

= (2𝜀)
(𝑘−2)/2

2
𝑘−1

𝐶
𝑘/2

𝑘
((

𝐄
𝑖∼[𝑛]

((⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖) + (𝑦𝑖 − ⟨𝜃
∗
, 𝑥𝑖⟩))

2

)

𝑘/2

+
(

𝐄
𝑖∼[𝑛]

(⟨𝜃
∗
, 𝑥𝑖⟩ − 𝑦𝑖)

2

)

𝑘/2

)

⩽ (2𝜀)
(𝑘−2)/2

2
𝑘−1

𝐶
𝑘/2

𝑘
((

2 𝐄
𝑖∼[𝑛]

(⟨𝜃, 𝑥𝑖⟩ − 𝑦𝑖)
2
+ 2 𝐄

𝑖∼[𝑛]
(𝑦𝑖 − ⟨𝜃

∗
, 𝑥𝑖⟩)

2

)

𝑘/2
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+
(

𝐄
𝑖∼[𝑛]

(⟨𝜃
∗
, 𝑥𝑖⟩ − 𝑦𝑖)

2

)

𝑘/2

)

= (2𝜀)
(𝑘−2)/2

2
𝑘−1

𝐶
𝑘/2

𝑘 ((
2 ⋅ err̂(𝜃) + 2err̂(𝜃

∗
))

𝑘/2
+ err̂(𝜃

∗
)
𝑘/2

)

⩽ (2𝜀)
(𝑘−2)/2

2
𝑘−1

𝐶
𝑘/2

𝑘 (4
𝑘/2

⋅ err̂(𝜃)
𝑘/2

+ (1 + 4
𝑘/2

) ⋅ err̂(𝜃
∗
)
𝑘/2

) ,

where in the last step we have again used that (𝑎 + 𝑏)𝑘 ⩽ 2𝑘−1(𝑎𝑘 + 𝑏𝑘) is a degree-𝑘 sum-of-squares
inequality. Putting all of this together, we have a degree-𝑂(𝑘) sum-of-squares proof that

(err̂(𝜃) − err2
(𝜃))

𝑘/2
⩽ (32𝜀)

(𝑘−2)/2
𝐶
𝑘/2

𝑘 (err̂(𝜃)
𝑘/2

+ err̂(𝜃
∗
)
𝑘/2

)

= 𝑂(𝐶𝑘𝜀
1−2/𝑘

)
𝑘/2

⋅ (err̂(𝜃)
𝑘/2

+ err(̂)
𝑘/2

)

where 2 denotes the uniform distribution over the variables (𝑎𝑖, 𝑏𝑖). Finally, we once again apply the
inequality (𝑎+𝑏)𝑡 ⩽ 2𝑡−1(𝑎𝑡+𝑏𝑡) on the right-hand side, this timewith 𝑎+𝑏 = err̂(𝜃), 𝑎 = err̂(𝜃)−err2

(𝜃),
𝑏 = err2

(𝜃), and 𝑡 = 𝑘/2 to obtain

⩽ 𝑂(𝐶𝑘𝜀
1−2/𝑘

)
𝑘/2

(
2
𝑘/2

(err̂(𝜃) − err2
(𝜃))

𝑘/2
+ 2

𝑘/2
err2

(𝜃)
𝑘/2

+ err(̂)
𝑘/2

)
.

Re-arranging we have the degree-𝑂(𝑘) sum-of-squares inequality

(err̂(𝜃) − err2
(𝜃))

𝑘/2
⩽

𝑂(𝐶𝑘𝜀
1−2/𝑘)𝑘/2

1 − 𝑂(𝐶𝑘𝜀
1−2/𝑘)𝑘/2

(err2
(𝜃)

𝑘/2
+ err(̂)

𝑘/2
)

= 𝑂(𝐶𝑘𝜀
1−2/𝑘

)
𝑘/2

(err2
(𝜃)

𝑘/2
+ err(̂)

𝑘/2
)

Applying the pseudoexpectation on both sides as well as the SoS version of Jensen’s inequality (�̃�[(𝑎 +

𝑏)𝑘] ⩾ (�̃�[𝑎 + 𝑏])𝑘 for 𝑘 a power of 2), from this we get,

(�̃�[err̂(𝜃)] − �̃�[err2
(𝜃)])

𝑘/2
⩽ �̃�[(err̂(𝜃)−err2

(𝜃))
𝑘/2

] ⩽ 𝑂(𝐶𝑘𝜀
1−2/𝑘

)
𝑘/2

⋅(�̃�[err2
(𝜃)

𝑘/2
] + err(̂)

𝑘/2
) .

Now, �̃�[err2
(𝜃)𝑘/2] is the quantity we were minimizing, and in particular it is at most err(̂)𝑘/2 be-

cause ̂ and 𝜃∗ were feasible solutions to our polynomial optimization problem. Similarly, �̃�[err2
(𝜃)] ⩽

�̃�[err2
(𝜃)𝑘/2]2/𝑘 ⩽ err̂(𝜃

∗) = err(̂). Hence, we have that

err̂(�̃�[𝜃]) ⩽ �̃�[err̂(𝜃)] ⩽ (1 + 𝑂(𝐶𝑘𝜀
1−2/𝑘

)) ⋅ err(̂),

concluding the proof.

4 Conclusion

Bibliographic remarks. This lecture is based on the work of Klivans, Kothari, and Meka, who gave
algorithms for robust linear regressionwith bothmean squared loss and 𝓁1 loss in [KKM18]. Also of interest
is the follow-upwork of Bakshi and Prasad [BP21], who obtain optimal statistical rates for regression under
the stronger assumption that there is some negative correlation with the noise; their proof differs from the
above in that they exploit the condition that the minimizing 𝜃∗ satisfies ∇𝜃err(𝜃

∗) = 0. The condition of
SoS-certifiable hypercontractivity is studied extensively in [KS17].

Contact. Comments are welcome at tselil@stanford.edu.
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