
STATS 314A: Advanced Statistical Theory
The Sum-of-Squares Algorithmic Paradigm in Statistics
Instructor: Tselil Schramm

Lecture 3
April 6, 2022

Lecture 3: Block models & information-computation gaps

In this lecture we give another simple application of the sum-of-squares paradigm, to the problem of
recovering communities in stochastic block models with average degrees Ω(log 𝑛). Sparse stochastic block
models exhibit a notorious information-computation gap, and we describe the gap as well as give a heuris-
tic derivation of the threshold. Some bibliographic remarks will be deferred to the end.

These notes have not been reviewed with the same scrutiny applied to formal publications. There may be errors.

1 Stochastic block models

Definition 1.1. The stochastic block model is a family of distributions over graphs, parametrized by in-
tegers 𝑛 (the number of vertices) and 𝑘 (the number of communities), and probabilities 𝑝in (internal edge
probability) and 𝑝out (external edge probability).
One samples 𝐺 ∼ (𝑛, 𝑘, 𝑝in, 𝑝out) as follows:

1. Identify the vertex set 𝑉 (𝐺) with [𝑛].
2. Sample a uniform partition of [𝑛] into 𝑘 sets or “communities” of equal size. Let 𝑋 ∈ {0, 1}

𝑛×𝑘 repre-
sent this partition, with 𝑋𝑖𝑐 = 𝟏[vertex 𝑖 ∈ community 𝑐].

3. For each pair 𝑖 ≠ 𝑗 ∈ [𝑛] independently, add edge (𝑖, 𝑗) to 𝐸(𝐺) with probability 𝑝in if 𝑖, 𝑗 are in the
same community, and with probability 𝑝out otherwise.

In this lecture, we will focus on the case when 𝑘 = Θ(1) and min(𝑝in𝑛, 𝑝out𝑛) = Ω(1). Some of what
we prove can be extended to other regimes too.

These simple models are employed in multiple contexts; they are basic models for social networks, in
which each partition can model a community of people (people are more likely to know other people from
the same community). (𝑛, 𝑘, 𝑝in, 𝑝out) is a primitive model for a social network, to be sure, but network
science is hard, and if you want to evaluate a clustering algorithm (or some other sort of algorithm), it’s not
a bad place to start. Block models can also model physical systems, in which we think of each partition as
a type of particle, and particles of the same type are either attracting (𝑝in > 𝑝out) or repulsive (𝑝in < 𝑝out).

Remark 1.2. Block models are sometimes defined more flexibly; the model above is sometimes referred
to as the “symmetric block model.” In the most general case, we allow communities of different sizes, and
distinct probabilities between each pair of communities, {𝑝𝑎,𝑏}𝑎,𝑏∈[𝑘].

Even in the symmetric block model, sometimes the partition 𝑋 is chosen so that the community of
each 𝑖 ∈ [𝑛] is chosen from Unif([𝑘]) independently, so that the parts in the partition are not even. This is
sometimes more convenient for calculations, and when 𝑘 = Θ(1), the differences between the models are
usually qualitatively negligible.

Algorithmic questions on block models. There are two algorithmic questions typically associated
with block models:

1. Recovery: given 𝐺 ∼ (𝑛, 𝑘, 𝑝in, 𝑝out), recover 𝑋 (either exactly or approximately).

1

2. Detection: you are given a graph 𝐺, and you wish to hypothesis test between the two hypotheses:
𝐺 ∼ 0 = (𝑛, 1

𝑘
𝑝in +

𝑘−1

𝑘
𝑝out), or 𝐺 ∼ 1 = (𝑛, 𝑘, 𝑝in, 𝑝out). In the null hypothesis 0, there is no

community structure.

In what follows, we will give an SoS algorithm for recovery in the regime 𝑝in, 𝑝out = Ω(
log 𝑛

𝑛
), and we

will discuss a notorious information-computation gap for detection in the regime 𝑝in, 𝑝out = 𝑂(
1

𝑛
).

2 Sum-of-squares paradigm for recovery in block models

In the recovery problem, we wish to recover the partition 𝑋 which maximizes 𝐏𝐫[𝑋 ∣ 𝐺], the maximum
likelihood estimator. Here, the maximum likelihood estimate is not convenient to work with, and in partic-
ular the constraint that 𝑋 is the maximum likelihood estimator cannot be easily expressed as a low-degree
polynomial constraint. Instead, we’ll consider the maximum a-posteriori estimator, or the MAP estimator,

𝑌
∗
= argmax

𝑌 balanced 𝑘-partition
𝐏𝐫[𝐺 ∣ 𝑌].

We’ll prove that if 𝐺 is sampled from partition 𝑋 , then with high probability (𝑌 ∗)(𝑌 ∗)⊤ is close to 𝑋𝑋
⊤.

Further, we’ll give a sum-of-squares proof of this fact, which will give us an algorithm.
First, it will be useful for us to better understand the maximizer 𝑌 ∗. The following characterization of

the maximizer is easier to encode in a low-degree polynomial system.

Lemma 2.1. The balanced 𝑘-way partition 𝑌
∗ maximizing 𝐏𝐫[𝐺 ∣ 𝑌] is also the balanced 𝑘-way partition

maximizing the function ⟨𝐴𝐺, 𝑌 𝑌
⊤
⟩ ⋅ log

𝑝in(1−𝑝out)

𝑝out(1−𝑝in)
, or equivalently,

𝑌
∗
=

{

argmax
𝑌
⟨𝐴𝐺, 𝑌 𝑌

⊤
⟩

𝑝in

1−𝑝in
>

𝑝out

1−𝑝out

argmin
𝑌
⟨𝐴𝐺, 𝑌 𝑌

⊤
⟩

𝑝in

1−𝑝in
<

𝑝out

1−𝑝out

.

Proof. For 𝑖 ∈ [𝑛], let 𝑌𝑖 ∈ {0, 1}
𝑘 be such that 𝑌𝑖(𝑐) = 𝑌𝑖𝑐 . Note that for 𝑖, 𝑗 ∈ [𝑛], ⟨𝑌𝑖, 𝑌𝑗 ⟩ = 𝟏[𝑖, 𝑗 in same community].

Now since the edges of 𝐺 are independent conditioned on 𝑌 , we can write,

𝐏𝐫[𝐺 ∣ 𝑌] = ∏

𝑖,𝑗∈[𝑛]

(
𝑝
⟨𝑌𝑖,𝑌𝑗 ⟩

in
⋅ 𝑝

1−⟨𝑌𝑖,𝑌𝑗 ⟩

out)

𝟏[(𝑖,𝑗)∈𝐸(𝐺)]

((1 − 𝑝in)
⟨𝑌𝑖,𝑌𝑗 ⟩

(1 − 𝑝out)
1−⟨𝑌𝑖,𝑌𝑗 ⟩

)

𝟏[(𝑖,𝑗)∉𝐸(𝐺)]

Because log is a strictly increasing function, the maximizer of 𝐏𝐫[𝐺 ∣ 𝑌] is the same as the maximizer of
log 𝐏𝐫[𝐺 ∣ 𝑌]. Now, applying the logarithm and simplifying the above, we can write,

log 𝐏𝐫[𝐺 ∣ 𝑌] = ∑

(𝑖,𝑗)∈𝐸(𝐺)

⟨𝑌𝑖, 𝑌𝑗 ⟩ log

𝑝in

𝑝out

+ ∑

(𝑖,𝑗)∉𝐸(𝐺)

⟨𝑌𝑖, 𝑌𝑗 ⟩ log

1 − 𝑝in

1 − 𝑝out

+ |𝐸(𝐺)| log 𝑝out +
((

𝑛

2)
− |𝐸(𝐺)|

)
log(1 − 𝑝out).

The quantity on the second line does not depend on 𝑌 at all, and so we can call it stuff(𝐺). Expressing the
above as a matrix-matrix inner product,

=

1

2

log

1 − 𝑝in

1 − 𝑝out

⋅ ⟨𝑌 𝑌
⊤
, 𝐽⟩ +

1

2

log

𝑝in(1 − 𝑝out)

𝑝out(1 − 𝑝in)

⋅ ⟨𝑌 𝑌
⊤
, 𝐴𝐺⟩ + stuff(𝐺),

for 𝐽 the 𝑛 × 𝑛 all-1’s matrix, and 𝐴𝐺 the adjacency matrix of 𝐺.1 We can simplify even further with the
following claim:

1Really to be absolutely correct we should subtract the diagonal of 𝐽 , since we don’t consider the 𝑖 = 𝑗 terms. However the
diagonal of 𝑌 𝑌 ⊤ is just 1, so this will not matter, and you can check that this does not affect the overall argument.

2

Claim 2.2. For any balanced 𝑘-way partition 𝑌 of [𝑛], ⟨𝑌 𝑌 ⊤, 𝐽 ⟩ = 𝑛
2

𝑘
.

Proof of Claim 2.2. We can manipulate the expression algebraically, to start:

⟨𝑌 𝑌
⊤
, 𝐽 ⟩ = ⟨𝑌 𝑌

⊤
, 11

⊤
⟩ = Tr(𝑌 𝑌 ⊤11⊤) = ‖1

⊤
𝑌 ‖

2

2
.

Now, for each column 𝑌
𝑐 of 𝑌 , we have that ⟨1, 𝑌 𝑐⟩ = 𝑛

𝑘
by the balanced assumption. This yields ⟨𝑌 𝑌 ⊤, 𝐽 ⟩ =

(
𝑛

𝑘
)
2
⋅ 𝑘 as desired.

Applying Claim 2.2, we can push the ⟨𝑌 𝑌 ⊤, 𝐽 ⟩ term into stuff(𝐺), creating a term stuff
′
(𝐺)which again

does not depend on the specific choice of balanced partition 𝑌 . So,

log 𝐏𝐫[𝐺 ∣ 𝑌] = log

𝑝in(1 − 𝑝out)

𝑝out(1 − 𝑝in)

⋅ ⟨𝑌 𝑌
⊤
, 𝐴𝐺⟩ + stuff

′
(𝐺),

from which the conclusion follows.

2.1 Algorithm from the SoS paradigm

We will write a polynomial system which searches for 𝑌 ∗. Our variables will be 𝑌 ∈ R
𝑛×𝑘 , and our axioms

will enforce that 𝑌 corresponds to a balanced 𝑘-way partition:

 =

{

𝑌
2

𝑖𝑐
= 𝑌𝑖𝑐

}

𝑖∈[𝑛],𝑐∈[𝑘]
∪

{

(1
⊤

𝑛
𝑌)𝑐 =

𝑛

𝑘

}

𝑐∈[𝑘]

∪ {⟨𝑌𝑖, 1𝑘⟩ = 1}
𝑖∈[𝑛]

.

Our polynomial optimization program will be

max ⟨𝑌 𝑌
⊤
, 𝐴𝐺⟩ 𝑠.𝑡. .

The theorem below is not optimal in its dependence on 𝑘; see [HWX16, Ban18] for a sharper analysis
of the performance of SDPs for exact recovery in block models with 𝑘 = 2, and [AS15] for an information-
theoretically optimal efficient algorithm.

Theorem 2.3. Suppose 𝑝in = 𝛼
log 𝑛

𝑛
, 𝑝out =

𝛽 log 𝑛

𝑛
satisfy 𝑝in > 𝑝out

2, for 𝛼, 𝛽 = Ω(1). Then with high
probability over the choice of 𝐺,

 ⊢2

⟨

𝐄̃[𝑌 𝑌
⊤
]

‖𝐄̃[𝑌 𝑌
⊤
]‖𝐹

,

𝑋𝑋
⊤

‖𝑋𝑋
⊤
‖𝐹 ⟩

⩾ 1 −

√

𝑘𝛼 +

√

𝑘
3
𝛽

𝛼 − 𝛽

⋅

√

𝑘

log 𝑛

.

This is to say that, if 𝛼 and 𝛽 are sufficiently separated compared to
√

𝑘𝛼 +

√

𝛽 and 𝑘

log 𝑛
, we know

that 𝐄̃[𝑌 𝑌 ⊤] must be closely aligned with the block matrix 𝑋𝑋
⊤ which defines the communities, so the

communities can be recovered up to some error (depending on 𝜀). With more work one can actually show
that an SDP-based algorithm recovers 𝑋 with no error with high probability; again see [HWX16, Ban18].

Proof. We want to use the fact that the objective value, ⟨𝑌 𝑌 ⊤, 𝐴𝐺⟩ is large to conclude that 𝑌 𝑌 ⊤ should be
close to 𝑋𝑋

⊤. To that end, we will split 𝐴𝐺 into a sum of its expectation and a random matrix representing
its deviation,

𝐴𝐺 = 𝐄[𝐴𝐺] + Δ = 𝑝out ⋅ 𝐽𝑛 + (𝑝in − 𝑝out) ⋅ 𝑋𝑋
⊤
+ Δ.

2The opposite case can be handled by a near-identical proof

3

Now we can write,

⟨𝑌 𝑌
⊤
, 𝐴𝐺⟩ = 𝑝out ⋅ ⟨𝑌 𝑌

⊤
, 𝐽 ⟩ + (𝑝in − 𝑝out)⟨𝑌 𝑌

⊤
, 𝑋𝑋

⊤
⟩ + ⟨𝑌 𝑌

⊤
, Δ⟩

⩽ 𝑝out ⋅ ⟨𝑌 𝑌
⊤
, 𝐽 ⟩ + (𝑝in − 𝑝out)⟨𝑌 𝑌

⊤
, 𝑋𝑋

⊤
⟩ + ∑

𝑐∈[𝑘]

‖𝑌
𝑐
‖
2
⋅ 𝜆max(Δ)

= 𝑝out ⋅

𝑛
2

𝑘

+ (𝑝in − 𝑝out)⟨𝑌 𝑌
⊤
, 𝑋𝑋

⊤
⟩ + 𝑛 ⋅ 𝜆max(Δ),

where the inequality was a degree-2 sum-of-squares inequality (sinceΔ ⩽ 𝜆max(Δ)⋅1) and the final equality
uses to conclude that ‖𝑌 𝑐‖2 = ⟨𝑌

𝑐
, 1𝑛⟩ =

𝑛

𝑘
for each 𝑐 ∈ [𝑘], and also since the proof of Claim 2.2 is an SoS

proof modulo the axioms 1⊤𝑌 𝑐 = 𝑛

𝑘
in. So we conclude that

 ⊢2 (𝑝in − 𝑝out)⟨𝑌 𝑌
⊤
, 𝑋𝑋

⊤
⟩ ⩾ ⟨𝑌 𝑌

⊤
, 𝐴𝐺⟩ − 𝑝out

𝑛
2

𝑘

− 𝑛𝜆max(Δ). (1)

Now, we want to understand what this implies about 𝐄̃[𝑌 𝑌 ⊤] and 𝑋𝑋
⊤. Clearly  is feasible (so

long as 𝑛

𝑘
is an integer), so a pseudoexpectation operator respecting  must exist. Further, since the

pseudoexpectation is a relaxation of a moment operator over the set of solutions to , we have that the
maximizing (recall 𝑝in > 𝑝out) pseudoexpectation satisfies

⟨𝐄̃ [𝑌 𝑌
⊤

] , 𝐴𝐺⟩ ⩾ ⟨𝑋𝑋
⊤
, 𝐴𝐺⟩ ≈ 𝐄

𝐺∣𝑋
[⟨𝑋𝑋

⊤
, 𝐴𝐺⟩] = 𝑝in ⋅

𝑛
2

𝑘

, (2)

since ⟨𝑋𝑋
⊤
, 𝐴𝐺⟩ is a sum of independent random variables conditioned on𝑋 , so we expect it to concentrate

quite well around its mean (so long as 𝑝in𝑛2/𝑘 ≫ 1). We’ll content ourselves with pretending this ≈ is an
equality, keeping in mind that it is actually only true up to (1 ± 𝑜(1)) factors.

Hence combining (1) and (2),

⟨𝐄̃[𝑌 𝑌
⊤
], 𝑋𝑋

⊤
⟩ ⩾

𝑛
2

𝑘

−

𝑛𝜆max(Δ)

𝑝in − 𝑝out

(3)

Also, since 𝑋𝑋
⊤ is a 0/1 valued matrix, ‖𝑋𝑋

⊤
‖
2

𝐹
= ⟨𝐽 , 𝑋𝑋

⊤
⟩ =

𝑛
2

𝑘
(the final equality is by Claim 2.2).

Our axioms imply, ⊢2 ‖𝑌 𝑌
⊤
‖
2

𝐹
= ⟨𝐽 , 𝑌 𝑌

𝑇
⟩ =

𝑛
2

𝑘
, since the axioms 𝑌 2

𝑖𝑐
= 𝑌𝑖𝑐 and ⟨𝑌𝑖, 1𝑘⟩ = 1 imply that 𝑛

2

𝑘
=

⟨𝐽 , 𝑌 𝑌
⊤
⟩ = ‖𝑌 𝑌

⊤
‖
2

𝐹
. Since 𝐄̃[𝑎2] ⩾ 𝐄̃[𝑎]

2 is a degree-2 sum-of-squares inequality, ‖𝐄̃[𝑌 𝑌 ⊤]‖2
𝐹
⩽ 𝐄̃‖𝑌 𝑌

⊤
‖
2

𝐹
=

𝑛
2

𝑘
.

Using this information with (3),

⟨

𝐄̃[𝑌 𝑌
⊤
]

‖𝐄̃[𝑌 𝑌
⊤
]‖𝐹

,

𝑋𝑋
⊤

‖𝑋𝑋
⊤
‖𝐹 ⟩

⩾ 1 −

𝑘𝜆max(Δ)

𝑛(𝑝in − 𝑝out)

.

So we get some bound on the error, in terms of 𝜆max(Δ).
What is 𝜆max(Δ)? Δ is a block matrix with 𝑘 × 𝑘 blocks {Δ𝑎,𝑏}𝑎,𝑏∈[𝑘] of size 𝑛

𝑘
×

𝑛

𝑘
each, where the blocks

are indexed by pairs of communities. the entries of Δ𝑎,𝑏 are independent (up to symmetry, Δ𝑎,𝑏 = Δ
⊤

𝑏,𝑎
),

each entry distributed like Ber(𝑝in) − 𝑝in if 𝑎 = 𝑏 and like Ber(𝑝out) − 𝑝out if 𝑎 ≠ 𝑏. If the entries were
all identically distributed as Ber(𝑝) − 𝑝 with 𝑝 = Ω(

log 𝑛

𝑛
), we would have that ‖Δ‖ ⩽ 2

√

𝑝(1 − 𝑝)𝑛 =

(1 + 𝑜(1)) ⋅ 2

√

𝐕𝐚𝐫(Ber(𝑝))𝑛 with high probability. To get a very loose bound, we can write Δ as a sum of
its blocks and apply the triangle inequality for the operator norm and get that with high probabiity,

𝜆max(Δ) ⩽ ‖Δ‖ ⩽ ∑

𝑎,𝑏∈[𝑘]

‖Δ𝑎,𝑏‖ ⩽ 𝑘 ⋅

√

𝑝in(1 − 𝑝in)

𝑛

𝑘

+ 𝑘(𝑘 − 1) ⋅

√

𝑝out(1 − 𝑝out)

𝑛

𝑘

⩽
√

𝑝in𝑛𝑘 +

√

𝑝out𝑛𝑘
3
.

4

This bound is not tight, but it is sufficient to get us something nontrivial. Hence, parametrizing 𝑝in = 𝛼
log 𝑛

𝑛

and 𝑝out = 𝛽
log 𝑛

𝑛
, we have

𝑘𝜆max(Δ)

𝑛(𝑝in − 𝑝out)

⩽
𝑘

𝑛(𝑝in − 𝑝out)

⋅ (

√

𝑝in𝑛𝑘 +

√

𝑝out𝑛𝑘
3
) =

√

𝑘𝛼 +

√

𝛽𝑘
3

(𝛼 − 𝛽)

⋅

√

𝑘

log 𝑛

.

This completes the proof.

3 An information-computation gap in the sparse regime

The problem of detection in stochastic block models has an information-computation gap when 𝑝in, 𝑝out =

Θ(
1

𝑛
). Let 𝑝in =

𝑎

𝑛
and 𝑝out =

𝑏

𝑛
, and denote also the average degree 𝑑avg =

1

𝑘
𝑎 +

𝑘−1

𝑘
𝑏. As is intuitively

clear, the problem of hypothesis testing between 0 = (𝑛, 𝑝avg) (for 𝑝avg =
1

𝑘
𝑝in +

𝑘−1

𝑘
𝑝out) and 1 =

(𝑛, 𝑘, 𝑝in, 𝑝out) gets easier as 𝑝in, 𝑝out (or 𝑎, 𝑏) get further apart.
We’ll associate the following signal-to-noise ratio parameter with this problem:

𝑠 =
(

𝑎 − 𝑏

𝑘)

2

⋅

1

𝑑avg

.

This may look unnatural at first, but below we’ll explain where this quantity comes from.
The parameter setting where 𝑠 = 1 is called the Kesten-Stigum threshold (or KS-threshold). For all

𝑘 ⩾ 2, the best detection algorithms known to date succeed if and only if 𝑠 > 1, or “above the Kesten-
Stigum threshold” [AS16a, BMR21].

In the special case 𝑘 = 2, the KS threshold 𝜏KS = 1 and the information-theoretic threshold 𝜏info below
which (when 𝑠 < 𝜏info) dTV(0,1) = 𝑜(1) are known to coincide [MNS15, MNS18, Mas14]. However, the
information theoretic threshold is known to scale with 𝑘 as 𝜏info = Θ(

log 𝑘

𝑘
) [BMNN16]. Hence, for 𝑘 large

enough, for Θ(log 𝑘
𝑘
) < 𝑠 ⩽ 1, the detection problem is solvable information-theoretically, but we don’t

know computationally efficient algorithms that do so.

3.1 Heuristic justification for the KS threshold

The signal-to-noise parameter 𝑠 and the threshold 𝑠 = 1 come from an information-theoretic lower bound
for solving the related root recovery problem in a broadcast process on a random tree, generated in such a
manner that this random tree can be coupled with a breadth-first-search starting at an arbitrary vertex in
𝐺 ∼ (𝑛, 𝑘, 𝑝in, 𝑝out).

Breadth-first-search and/or a broadcast process on a tree. Imagine doing breadth-first search (BFS)
up to depth 𝑡 starting at some node 𝑣 ∈ 𝑉 (𝐺). We can couple this BFS with the sampling of 𝐺 itself, for any
constant 𝑡, as follows:

1. Start at the root, 𝑣.
2. Assign 𝑣 a community label ∈ [𝑘] uniformly at random.
3. Push 𝑣 onto a queue.
4. While the queue is non-empty, or until the vertex at the head of the queue is of distance 𝑡 from the

root 𝑣:
(a) Remove the leading vertex 𝑢 from the queue.

5

(b) Independently sample Pois(1
𝑘
𝑎) children of 𝑢 with the same label 𝑐 as 𝑢, and Pois(1

𝑘
𝑏) children

with label 𝑐′ for each 𝑐
′
∈ [𝑘] ⧵ {𝑐}.

(c) Put each of these children into the queue.

One can show that for 𝑡 constant, this process can be coupled with a breadth-first search in 𝐺 which
succeeds with high probability, by using the fact that Bin(𝑛, 𝜆

𝑛
) is well-approximated by Pois(𝜆) as 𝑛 → ∞.

This is a classic style of coupling, see for example [AS16b], Chapter 11.
Now, this can also be viewed as a broadcast process on a Galton-Watson tree of depth at most 𝑡. The idea

is that each node samples Pois(𝑑avg) children idependently, then “broadcasts” a label to each of its children,
keeping its own label with probability 𝑎

𝑑avg
and choosing one of the 𝑘 − 1 other labels uniformly at random

with the remaining probability. By Poisson splitting, this is equivalent to the process described above.

Root reconstruction and a heuristic lower bound. A natural question in the context of a broadcast
process on a tree is the following: given the labels at the leaves of the tree, an we get a reasonable estimate
for the label of the root? The KS threshold arises as the threshold at which root reconstruction becomes
information-theoretically possible [KS66, EKPS00]. Below we’ll prove one direction: we’ll show that when
𝑠 > 1, root reconstruction is possible with a canonical estimator.

Theorem 3.1. Let 𝑋𝑡 be the number of vertices with label 𝑐 at depth 𝑡 in the tree (so 𝑋0 = 𝟏[root has label 𝑐]).
Then

lim
𝑡→∞

𝐄[𝑋𝑡 ∣ 𝑋0 = 1] − 𝐄[𝑋𝑡 ∣ 𝑋0 = 0]

√

𝐕𝐚𝐫[𝑋𝑡]

=

1

𝑘

𝑠
𝑡/2
.

In particular if 𝑠 > 1, one can use the value of 𝑋𝑡 for 𝑡 large enough to estimate whether 𝑋0 = 1

(equivalently, if the root has label 𝑐) by checking if 𝑋𝑡 is closer to 𝐄[𝑋𝑡 ∣ 𝑋0 = 1] or 𝐄[𝑋𝑡 ∣ 𝑋0 = 0], with
the bound on the variance furnishing concentration via the second moment method. When 𝑠 ⩽ 1, the
difference in expectations is overwhelmed by the variance.

Before we dive into the proof, what does root reconstruction have to dowith detection in blockmodels?
This has to do with the performance of the Belief Propagation Algorithm (BP), which precisely computes
the marginal distribution of the root vertex in a broadcast process on a tree (given access to the leaf vertex
labels, and to the structure of the tree). If we are in the regime 𝑠 > 1 where root reconstruction is possi-
ble, then Belief Propagaion also works for reconstructing the root, and in fact it achieves the statistically
optimal estimation rate.

Though Belief Propagation is designed to work on trees, people can (and do) run it on graphs with
cycles; it seems to work okay on sparse graphs, and in some cases one can even prove formally that some
version of it works [KMM+13, AS16a, BLM15]. The reason 𝑠 > 1might suggest that BP works is that if you
choose a random partition of the vertices of 𝐺 to start, then patch it up using BP as though each vertex
were the root of a depth-𝑡 tree (in sparse random graphs, most vertices’ depth-𝑡 neighborhoods are trees),
you get nontrivial information about some fraction of the vertices’ labels. Alternatively if 𝑠 ⩽ 1 and BP
fails, then this could be taken as evidence that any polynomial-time algorithm will fail, if you beleive that
BP is optimal. This is discussed further in, for example, these sources [DKMZ11, M+17, LM21].

It is surprising that such imprecise heuristic reasoning seems to predict the limits of performance not
only of BP algorithms, but also of dramatically different algorithms like SoS/SDPs [MS16, BMR21] and low-
degree polynomial estimators [HS17, BBK+21]. This apparent universality across algorithms is a theme
we’ll return to throughout the class.

Now, we prove that 𝑋𝑡 is a reasonable estimator for whether 𝑋0 = 1.

6

Proof of Theorem 3.1. Let 𝑋𝑡 be the number of vertices of label 𝑐 at depth 𝑡, and let 𝑌𝑡 be the number of
vertices of label not 𝑐 at depth 𝑡. By definition of our process,

𝐄[𝑋𝑡 ∣ 𝑋𝑡−1, 𝑌𝑡−1] =
1

𝑘
𝑎 ⋅ 𝑋𝑡−1 +

1

𝑘
𝑏 ⋅ 𝑌𝑡−1

𝐄[𝑌𝑡 ∣ 𝑋𝑡−1, 𝑌𝑡−1] =
𝑘−1

𝑘
𝑏 ⋅ 𝑋𝑡−1 + (

𝑎

𝑏
+

𝑘−2

𝑘
𝑏) ⋅ 𝑌𝑡−1.

Encoding this linear-algebraically for convenience, we have that

𝐄 [𝑋𝑡 𝑌𝑡] = [𝑋𝑡−1 𝑌𝑡−1]𝐴, for 𝐴 =
[

1

𝑘
𝑎

𝑘−1

𝑘
𝑏

1

𝑘
𝑏

1

𝑘
𝑎 +

𝑘−2

𝑘
𝑏]

.

So𝐴 is like the "transitionmatrix" for the expected number of vertices of each type, with the first row/column
corresponding to 𝑋 and the second row/column corresponding to 𝑌 . One can check that 𝐴 has eigenvalues
𝑎−𝑏

𝑘
and 𝑑avg =

𝑎+(𝑘−1)𝑏

𝑘
, with corresponding left-eigenvectors [1 − 1] and [1 𝑘 − 1] respectively.

Now, notice that

𝐸[𝑋𝑡 ∣ 𝑋0 = 1] − 𝐄[𝑋𝑡 ∣ 𝑋0 = 0] = 𝑒
⊤

1
𝐴
𝑡
𝑒1 − 𝑒

⊤

2
𝐴
𝑡
𝑒1 = (𝑒1 − 𝑒2)

⊤
𝐴
𝑡
𝑒1 =

(

𝑎 − 𝑏

𝑘)

𝑡

,

because 𝑒1 − 𝑒2 is the left eigenvector of 𝐴 with eigenvalue (𝑎 − 𝑏)/𝑘.
We now compute 𝐕𝐚𝐫[𝑋𝑡]. This is made simple if we consider 𝐕𝐚𝐫[𝑋𝑡 ∣ 𝑋𝑡−1, 𝑌𝑡−1]. Conditioned on

𝑋𝑡−1, 𝑌𝑡−1, 𝑋𝑡 is a sum of independent Poisson random variables, one for the number of children of com-
munity 𝑐 for each node in the 𝑡 − 1th leve. By independence, the variance of the sum is simply the sum of
the variances. Further, for 𝑄 ∼ Pois(𝜆), 𝐕𝐚𝐫[𝑄] = 𝜆. This implies that

𝐕𝐚𝐫[𝑋𝑡 ∣ 𝑋𝑡−1, 𝑌𝑡−1] =
1

𝑘
𝑎𝑋𝑡−1 +

1

𝑘
𝑏𝑌𝑡−1 = 𝐄[𝑋𝑡 ∣ 𝑋𝑡−1, 𝑌𝑡−1],

And hence, we can compute

𝐕𝐚𝐫[𝑋𝑡] = 𝐄[𝑋𝑡] = [
1

𝑘

𝑘−1

𝑘]𝐴
𝑡
𝑒1 =

1

𝑘

𝑑
𝑡

avg
,

where we have used that 𝐏𝐫[𝑋0 = 1] =
1

𝑘
, and that [1 𝑘 − 1] is the eigenvector of 𝐴 corresponding to the

eigenvalue 𝑑avg.
Combining the above,

lim
𝑡→∞

𝐄[𝑋𝑡 ∣ 𝑋0 = 1] − 𝐄[𝑋𝑡 ∣ 𝑋0 = 0]

√

𝐕𝐚𝐫[𝑋𝑡]

= lim
𝑡→∞

1

𝑘 (

𝑎 − 𝑏

𝑘

√

𝑑avg)

𝑡

,

and the quantity on the right can be re-written as 1

𝑘
𝑠
𝑡/2, as desired.

3.2 Weak recovery

In addition to the question of detection in the sparse regime, one can also ask about recovery. It’s not hard to
convince yourself that exact recovery is impossible, even when detection is possible: since 𝑝in, 𝑝out = Θ(

1

𝑛
),

a constant fraction of the vertices will be isolated, and there is no hope in recovering their community
membership. Still, you could hope to recover the partitions with accuracy better than a uniform ran-
dom assignment. This algorithmic task is called weak recovery. A very recent paper [YP22] gives the

7

information-theoretically optimal error rate for weak recovery everywhere above the KS-threshold, for
the special case 𝑘 = 2.

An interesting open problem is whether this algorithm can be matched by SoS algorithms; one ad-
vantage of SoS algorithms and SDPs is that they typically enjoy strong robustness guarantees, see e.g.
[DdNS22]. Robust SDP algorithms are known to achieve nontrivial weak recovery above the KS threshold,
but it is open whether they achieve the optimal rates. The work of Banks, Mohanty, and Raghavendra
[BMR21] presents an intriguing approach.

4 Conclusion

Bibliographic remarks. There is a vast body of literature on the stochastic block model, and I won’t
do it justice here; the surveys [Abb17, M+17] are nice resources. See also the specific reference pointers
throughout the notes above, though there are many references that I have left out.

Contact. Comments are welcome at tselil@stanford.edu.

References

[Abb17] Emmanuel Abbe. Community detection and stochastic block models: recent developments.
The Journal of Machine Learning Research, 18(1):6446–6531, 2017. 8

[AS15] Emmanuel Abbe and Colin Sandon. Community detection in general stochastic block models:
Fundamental limits and efficient algorithms for recovery. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science, pages 670–688. IEEE, 2015. 3

[AS16a] Emmanuel Abbe and Colin Sandon. Achieving the ks threshold in the general stochastic block
model with linearized acyclic belief propagation. Advances in Neural Information Processing
Systems, 29, 2016. 5, 6

[AS16b] Noga Alon and Joel H Spencer. The probabilistic method. John Wiley & Sons, 2016. 6

[Ban18] Afonso S Bandeira. Random laplacian matrices and convex relaxations. Foundations of Com-
putational Mathematics, 18(2):345–379, 2018. 3

[BBK+21] Afonso S Bandeira, Jess Banks, Dmitriy Kunisky, Christopher Moore, and Alex Wein. Spectral
planting and the hardness of refuting cuts, colorability, and communities in random graphs.
In Conference on Learning Theory, pages 410–473. PMLR, 2021. 6

[BLM15] Charles Bordenave, Marc Lelarge, and Laurent Massoulié. Non-backtracking spectrum of ran-
dom graphs: community detection and non-regular Ramanujan graphs. In 2015 IEEE 56th
Annual Symposium on Foundations of Computer Science, pages 1347–1357. IEEE, 2015. 6

[BMNN16] Jess Banks, Cristopher Moore, Joe Neeman, and Praneeth Netrapalli. Information-theoretic
thresholds for community detection in sparse networks. In Conference on Learning Theory,
pages 383–416. PMLR, 2016. 5

8

[BMR21] Jess Banks, Sidhanth Mohanty, and Prasad Raghavendra. Local statistics, semidefinite pro-
gramming, and community detection. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1298–1316. SIAM, 2021. 5, 6, 8

[DdNS22] Jingqiu Ding, Tommaso d’Orsi, Rajai Nasser, and David Steurer. Robust recovery for stochastic
block models. In 62nd Annual Symposium on Foundations of Computer Science (FOCS 2021),
2022. 8

[DKMZ11] Aurelien Decelle, Florent Krzakala, Cristopher Moore, and Lenka Zdeborová. Asymptotic
analysis of the stochastic block model for modular networks and its algorithmic applications.
Physical Review E, 84(6):066106, 2011. 6

[EKPS00] William Evans, Claire Kenyon, Yuval Peres, and Leonard J Schulman. Broadcasting on trees
and the ising model. Annals of Applied Probability, pages 410–433, 2000. 6

[HS17] Samuel B Hopkins and David Steurer. Efficient bayesian estimation from few samples: com-
munity detection and related problems. In 2017 IEEE 58th Annual Symposium on Foundations
of Computer Science (FOCS), pages 379–390. IEEE, 2017. 6

[HWX16] Bruce Hajek, Yihong Wu, and Jiaming Xu. Achieving exact cluster recovery threshold via
semidefinite programming. IEEE Transactions on Information Theory, 62(5):2788–2797, 2016. 3

[KMM+13] Florent Krzakala, Cristopher Moore, Elchanan Mossel, Joe Neeman, Allan Sly, Lenka Zde-
borová, and Pan Zhang. Spectral redemption in clustering sparse networks. Proceedings of the
National Academy of Sciences, 110(52):20935–20940, 2013. 6

[KS66] Harry Kesten and Bernt P Stigum. Additional limit theorems for indecomposable multidimen-
sional galton-watson processes. The Annals of Mathematical Statistics, 37(6):1463–1481, 1966.
6

[LM21] Siqi Liu and SidhanthMohanty. On statistical inferencewhen fixed points of belief propagation
are unstable. In IEEE Symposium on Foundations of computer science, 2021. 6

[M+17] Cristopher Moore et al. The computer science and physics of community detection: Land-
scapes, phase transitions, and hardness. Bulletin of EATCS, 1(121), 2017. 6, 8

[Mas14] Laurent Massoulié. Community detection thresholds and the weak Ramanujan property. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing, pages 694–703,
2014. 5

[MNS15] Elchanan Mossel, Joe Neeman, and Allan Sly. Reconstruction and estimation in the planted
partition model. Probability Theory and Related Fields, 162(3):431–461, 2015. 5

[MNS18] Elchanan Mossel, Joe Neeman, and Allan Sly. A proof of the block model threshold conjecture.
Combinatorica, 38(3):665–708, 2018. 5

[MS16] Andrea Montanari and Subhabrata Sen. Semidefinite programs on sparse random graphs and
their application to community detection. In Proceedings of the forty-eighth annual ACM sym-
posium on Theory of Computing, pages 814–827, 2016. 6

9

[YP22] Qian Yu and Yury Polyanskiy. Ising model on locally tree-like graphs: Uniqueness of solutions
to cavity equations. 2022. 7

10

	Stochastic block models
	Sum-of-squares paradigm for recovery in block models
	Algorithm from the SoS paradigm

	An information-computation gap in the sparse regime
	Heuristic justification for the KS threshold
	Weak recovery

	Conclusion

